Comparison of Damaged Borosilicate Constitutive Constants Obtained with Confined-Compression and Constant-Pressure-Compression Devices

(Comparison of "sleeve" and "bomb" tests)

Sidney Chocron
Kathryn Dannemann
Arthur Nicholls
James D. Walker
Charles E. Anderson

Southwest Research Institute San Antonio, Texas 78238

maintaining the data needed, and including suggestions for reducin	completing and reviewing the collect g this burden, to Washington Headq ould be aware that notwithstanding	ction of information. Send comme uarters Services, Directorate for In	nts regarding this burden estimation Operations and Rep	ate or any other aspect ports, 1215 Jefferson Da	existing data sources, gathering and of this collection of information, avis Highway, Suite 1204, Arlington with a collection of information if it		
1. REPORT DATE 27 JAN 2008		2. REPORT TYPE N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Comparison of Damaged Borosilicate Constitutive Constants Obtained with Confined-Compression and Constant-Pressure-Compression					5b. GRANT NUMBER		
Devices				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER		
Sidney Chocron; Kathryn Dannemann; Arthur Nicholls; James D. Walker; Charles E. Anderson					5e. TASK NUMBER		
warker; Charles E. Anderson				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Southwest Research Institute San Antonio, Texas 78238					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI					10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC		
48397-5000					11. SPONSOR/MONITOR'S REPORT NUMBER(S) 18599		
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	ion unlimited					
13. SUPPLEMENTARY No.	OTES ment contains color	images.					
14. ABSTRACT							
15. SUBJECT TERMS			,				
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	29	REST ONSIBLE LEASON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Objectives

- Ultimate objective: Transfer properties measured in the lab to ballistic simulations that can predict ballistic tests results
- Milestones:
 - Determine with laboratory experiments the strength of damaged borosilicate and soda-lime at low and high confining pressures
 - Find the Drucker-Prager constants, β and Y0, in an independent way and compare them with the sleeve tests.
 - Validate sleeve tests

Damaged Borosilicate Glass

- Two cycles in oven at 500 C and iced water.
- Structural integrity
- Why damaged borosilicate?
 - During ballistic penetration the projectile is in direct contact with damaged material.

Review: "Sleeve" test set-up

Review: "Sleeve" test results

Review: "Sleeve" test results

bf23-cycle4

bf23-cycle4

Review: "Sleeve" test results

- Assumed Drucker-Prager $Y = Y_0 + \beta P$
- Analysis of sleeve data $\beta = 1.8$
- Analysis of unconfined data

$$Y_0 = 43 \text{ MPa}$$

Data from 13 different tests. Each test can provide more than one point because of load/reload cycles

Setup of bomb test

OD = 7.5 in ID = 1.5 in Thick = 2.5 in Length = 23 in

Comparison of test methods

Sleeve Test

- Confinement pressure changes during the test
- The analysis is involved
- An analytical model is needed to infer constants
- Conceptually more involved but test relatively straightforward in practice.

Bomb Test

- The confinement pressure is kept constant during the test
- Conceptually easy test, difficult in practice

Bomb test technique

 σ_{LC} is the output given by the load cell. Strain gages on load cell are mounted to directly give the equivalent stress.

 σ_z is negative in compression (P is positive in compression)

A is the area reduction factor between anvil and specimen:

Axial stress on specimen:

$$\sigma_z = A\sigma_{LC} - P$$

Hydrostatic Pressure in specimen:

$$P_{H} = -\frac{1}{3} (\sigma_{z} + 2 \sigma_{r}) = -\frac{1}{3} (\sigma_{z} - 2 P)$$

Equivalent stress of specimen:

$$\sigma_{eq} = |\sigma_z - \sigma_r| = |\sigma_z| - P = A|\sigma_{LC}|$$

Expected "theoretical" results

$$\sigma_{\rm eq} = |\sigma_{\rm r} - \sigma_{\rm z}|$$

 $\sigma_{eq} = |\sigma_r - \sigma_z|$ Drucker-Prager: $Y = Y_0 + P_H$

When yielding:
$$\sigma_{eq} = Y \implies \sigma_r - \sigma_z = Y_0 + \beta P = Y_0 + \frac{\beta}{3} (\sigma_r + \sigma_\theta + \sigma_z)$$

$$\sigma_{z}|_{yield} = \frac{Y_{0}}{\frac{\beta}{3} - 1} + \frac{2\beta + 3}{\beta - 3} P_{C}^{0}$$

Where P_C^0 is the confinement pressure (or fluid pressure)

Note: The plateau is NOT a cap. It is "plastic" flow of the sample

Axial Strain (%)

Example of results (Borosilicate glass)

two faces with friction between them

Max. Equivalent Stress - Borosilicate glass

Each point is a test.
The triangles are P=0 (unconfined tests)

Y0 is around 10 - 20 MPa.

The outlier might have been more damaged and directly went to the residual curve.

Max. Equivalent Stress - Borosilicate glass

Comparison with sleeve data - Borosilicate glass

The overlap between sleeve tests and bomb tests gives increased confidence on the sleeve tests results

Drucker-Prager misses failure pattern

- A Drucker-Prager model is unable to predict a preferred failure angle, something systematically seen in the bomb tests.
- The failure angle does not depend on the fluid pressure (55-65 degs)

Mohr-Coulomb theory

- Based on maximum shear stress
- Yielding if:

$$\tau = c + \mu \ \sigma_n$$

$$\mu \ is \ internal \ friction \ coeff.$$

$$c \ is \ cohesion$$

• For a given stress state the radius and center of the MC circle are:

$$R = (\sigma_1 - \sigma_3)/2$$
$$C = (\sigma_1 + \sigma_3)/2$$

• Only two tests needed to find the constants

Bomb tests – MC perspective

- Bomb tests seem to align reasonably well
- Sharp drop for small normal stresses indicated by unconfined tests.

unconfined •

Bomb – MC parameters

slope	intercept	Angle of friction (deg/rad)	μ	Cohesion (MPa)
0.52	171.61	31.04/0.54	0.60	200.30

Bomb Tests – LSDYNA simulations with Mohr-Coulomb

LS-DYNA Failure Patterns

GL50-3D BOMB M-C Time = 4.9998e-05 Contours of Effective Plastic Strain min=0, at elem# 79694 max=1.63341, at elem# 110291

Fringe Levels 4.500e-01

3.500e-01

2.500e-01

2.000e-01 1.500e-01

5.000e-02

LS-DYNA Failure Patterns

BF-

Sleeve tests from MC perspective

All the tests

Conclusions

- Mohr-Coulomb captures very nicely both strength and failure phenomenon for bomb tests.
- MC also captures failure angle and strength in the sleeve tests.
- The overlap between bomb and sleeve tests support the results of the sleeve tests
- MC is being implemented in CTH to reproduce penetration experiments.

Acknowledgments

• To Doug Templeton from TARDEC/RDECOM